B.A/B.Sc. $1^{\text {st }}$ Semester (General) Examination, 2021 (CBCS)
 Subject: Mathematics
 Paper: BMG1CC1A/MATH-GE1 (Differential Calculus)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:
 $$
\begin{equation*} 6 \times 5=30 \tag{2} \end{equation*}
$$

(a) (i) Show that $\lim _{x \rightarrow 0} x \sin (1 / x)=0$.
(ii) The function f is defined as follows:

$$
f(x)=\left\{\begin{array}{cc}
-2 \sin x & \text { if }-\pi \leq x \leq-\frac{\pi}{2} \\
a \sin x+b, & \text { if }-\frac{\pi}{2}<x<\frac{\pi}{2} \\
\cos x & \text { if } \frac{\pi}{2} \leq x \leq \pi
\end{array}\right.
$$

If $f(x)$ is continuous in the interval $-\pi \leq x \leq \pi$, find the values of the constants a and b.
(b) (i) Give the geometrical interpretation of Rolle's theorem.
(ii) Determine all the numbers in $[-1,2]$ for which the conclusions of the Mean Value Theorem for the following function is satisfied.
$f(x)=x^{3}+2 x^{2}-x, x \in[-1,2]$.
(c) State and prove Euler's theorem on homogeneous function in case of two variables.
(d) (i) Where does the function $f(x)=\sin 3 x-3 \sin x$ attain its maximum or minimum value in $(0,2 \pi)$?
(ii) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x}$.
(e) \quad Show that $\frac{x}{1+x}<\log (1+x)<x$, if $x>0$.
(f) (i) If $y=x^{2 n}$, where n is a positive integer, show that
$y_{n}=2^{n}\{1.3 .5 \ldots .(2 n-1)\} x^{n}$.
(ii) If $y=A \sin m x+B \cos m x$, prove that $y_{2}+m^{2} y=0$.
(g) Show that the tangent at (a, b) to the curve
$\left(\frac{x}{a}\right)^{3}+\left(\frac{y}{b}\right)^{3}=2$ is $\frac{x}{a}+\frac{y}{b}=2$.
(h) Find the envelope of the straight lines $y=m x+\sqrt{a^{2} m^{2}+b^{2}}$.

2. Answer any three questions:

$$
\begin{equation*}
10 \times 3=30 \tag{5}
\end{equation*}
$$

(a) (i) If $y=e^{\operatorname{asin}^{-1} x}$, then prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0$.
(ii) If $V=z \tan ^{-1} \frac{y}{x}$, then prove that $\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0$.
(b) (i) If $l x+m y=1$ is a normal to the parabola $y^{2}=4 a x$, then show that $a l^{3}+2 a l m^{2}=m^{2}$.
(ii) If ρ_{1} and ρ_{2} be the radii of curvature at the ends of the focal chord of the parabola $y^{2}=4 a x$, then show that $\rho_{1}^{-\frac{2}{3}}+\rho_{2}^{-\frac{2}{3}}=(2 a)^{-\frac{2}{3}}$.
(c) (i) Is the origin a double point on the curve $y^{2}=2 x^{2} y+x^{4} y-2 x^{4}$? If so, state its nature.
(ii) Trace the curve $r=a \sin 2 \theta$.
(d) (i) Given $x y=4$, find the maximum and minimum values of $4 x+9 y$.
(ii) Find the asymptotes of the curve $x^{3}+3 x^{2} y-4 y^{3}-x+y+3=0$.
(e) (i) State Lagrange's mean value theorem and examine whether it is applicable to the function $f(x)=4-(6-x)^{\frac{2}{3}}$ in the interval [5,7]?
(ii) Expand $\log _{e}(1+x)$ in a finite series in powers of x , with the remainder in Lagrange's form.

