B.A./B.Sc. 2nd Semester (General) Examination, 2022 (CBCS) Subject: Mathematics Course: BMG2CC1B & Math-GE2 (Differential equations)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any two questions $10 \times 2 = 20$ Find the family of curves orthogonal to $y^2 - x^2 = a^2$, where *a* is a constant. (a) [2] Show that the Wronskian of the functions x^2 and $x^2 \log x$ is non-zero. Can these (b) [2] functions be independent solutions of an ordinary differential equation? Find the integrating factor of the differential equation $\frac{dy}{dx} + \frac{1}{1+x^2}y = \frac{e^{\tan^{-1}x}}{1+x^2}$. [2] (c) Solve: $\frac{2xdx}{y^3} + \frac{y^2 - 3x^2}{y^4} dy = 0.$ (d) [2] Show that the equation $(2x + y^2 + 2xz)dx + 2xydy + x^2dz = 0$ is integrable. [2] (e) Solve: $p^2 - p(e^x + e^{-x}) + 1 = 0$, where $p = \frac{dy}{dx}$ [2] (f) Determine the type of the equation $2\frac{\partial^2 z}{\partial x^2} - 3\frac{\partial^2 z}{\partial x \partial y} + 5\frac{\partial^2 z}{\partial y^2} = 0.$ [2] (g) (h) Form the partial differential equation by eliminating the arbitrary functions h and k[2] from the equation y = h(x - at) + k(x + at). Find integrating factor (I.F) of $(x^2y - 2xy^2)dx + (3x^2y - x^3)dy = 0$. (i) [2] Evaluate : $\frac{1}{(D-2)^2} x^3 e^{2x}$, where $D \equiv \frac{d}{dx}$. [2] (j) If the roots of the auxiliary equation of an ODE are $0,1,1,2\pm 3i$ (k) find its [2] complementary function. Evaluate: $\frac{1}{D^2 - 9}e^{e^x}$, where $D \equiv \frac{d}{dx}$. (l) [2] Solve: $(D - 1)^2 (D^2 + 2)^2 y = 0$, where $D \equiv \frac{d}{dx}$. (m) [2] Define the principle of superposition. [2] (n) Verify with reason that $\sin x$ and $\cos x$ are two linearly independent solution of (0)[2] $\frac{d^2y}{dx^2} + y = 0.$

2. Answer any four questions $4 \times 5 = 20$			
(a)		Obtain the general and singular solution of $y = px + \frac{a}{p}$, where $p = \frac{dy}{dx}$ and a is a	[5]
		constant.	
(b)		Solve: $(x^2D^2 + 3xD + 1)y = x \log x, D \equiv \frac{d}{dx}$.	[5]
(c)		Solve: $\frac{dx}{dt} + 4x + 3y = t$, $\frac{dy}{dt} + 2x + 5y = e^t$.	[5]
(d)		Using Charpit's method find complete integral of $xp + 3yq = 2(z - x^2q^2)$, $p = \frac{\partial z}{\partial x}$,	[5]
		$q = \frac{\partial z}{\partial y}.$	
(e)		Solve the initial value problem	[5]
		$(2x\cos y + 3x^2y) dx + (x^3 - x^2\sin y - y)dy = 0 \text{ with } y(0) = 2.$	
(f)		Solve the simultaneous equations: $\frac{dx}{dt} + y = \sin t$, $\frac{dy}{dt} + x = \cos t$. Given that $x = 2$	[5]
		and $y = 0$ when $t = 0$.	
3. Answer any two questions $2 \times 10 = 20$			
(a)	(i)	Solve by the method of variation of parameters: $\frac{d^2y}{dx^2} + a^2y = \tan ax$.	[5]
	(ii)	Solve: $y - x \frac{dy}{dx} = 2(1 + x^2 \frac{dy}{dx})$; given $y(1) = 1$.	[5]
(b)	(i)	Solve: $x(y-z)p + y(z-x)q = z(x-y), p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}$.	[4]
	(ii)	Eliminate the arbitrary function f from $f(x - y, y/x^2) = 0$.	[3]
	(iii)	Find the partial differential equation of the set of all right circular cones whose axes coincide with <i>z</i> -axis.	[3]
(c)	(i)	Find the integral surface of $x^2p + y^2q + z^2 = 0$, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$ which passes	[5]

through the hyperbola
$$xy = x + y, z = 1$$

(ii) Solve $\frac{1}{D^2 + a^2} x^2 \cos ax$, where $D \equiv \frac{d}{dx}$. [5]

$$\frac{d^2x}{dt^2} - 5\frac{dx}{dt} + 6x + 2e^{2t} + 3e^t = 0.$$

(ii) Solve:
$$(y - px)(p - 1) = p$$
, where $p = \frac{dy}{dx}$. [5]

[5]