B.A./B.Sc. $2^{\text {nd }}$ Semester (General) Examination, 2022 (CBCS)
 Subject: Mathematics
 Course: BMG2CC1B \& Math-GE2
 (Differential equations)

Time: 3 Hours
Full Marks: 60
The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any two questions

(a) Find the family of curves orthogonal to $y^{2}-x^{2}=a^{2}$, where a is a constant.
(b) Show that the Wronskian of the functions x^{2} and $x^{2} \log x$ is non-zero. Can these
functions be independent solutions of an ordinary differential equation?
(c) Find the integrating factor of the differential equation $\frac{d y}{d x}+\frac{1}{1+x^{2}} y=\frac{e^{\tan -1} x}{1+x^{2}}$.
(d) \quad Solve: $\frac{2 x d x}{y^{3}}+\frac{y^{2}-3 x^{2}}{y^{4}} d y=0$.
(e) Show that the equation $\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z=0$ is integrable.
(f) \quad Solve: $p^{2}-p\left(e^{x}+e^{-x}\right)+1=0$, where $p=\frac{d y}{d x}$.
(g) Determine the type of the equation $2 \frac{\partial^{2} z}{\partial x^{2}}-3 \frac{\partial^{2} z}{\partial x \partial y}+5 \frac{\partial^{2} z}{\partial y^{2}}=0$.
(h) Form the partial differential equation by eliminating the arbitrary functions h and k
from the equation $y=h(x-a t)+k(x+a t)$.
(i) \quad Find integrating factor (I.F) of $\left(x^{2} y-2 x y^{2}\right) d x+\left(3 x^{2} y-x^{3}\right) d y=0$.
(j) Evaluate $: \frac{1}{(D-2)^{2}} x^{3} e^{2 x}$, where $D \equiv \frac{d}{d x}$.
(k) If the roots of the auxiliary equation of an ODE are $0,1,1,2 \pm 3 i$ find its complementary function.
(1) Evaluate: $\frac{1}{D^{2}-9} e^{e^{x}}$, where $D \equiv \frac{d}{d x}$.
(m) \quad Solve: $(D-1)^{2}\left(D^{2}+2\right)^{2} \mathrm{y}=0$, where $D \equiv \frac{d}{d x}$.
(n) Define the principle of superposition.
(o) Verify with reason that $\sin x$ and $\cos x$ are two linearly independent solution of $\frac{d^{2} y}{d x^{2}}+y=0$.
(a) Obtain the general and singular solution of $y=p x+\frac{a}{p}$, where $p=\frac{d y}{d x}$ and a is a constant.
(b) Solve: $\left(x^{2} D^{2}+3 x D+1\right) y=x \log x, D \equiv \frac{d}{d x}$.
(c) Solve: $\frac{d x}{d t}+4 x+3 y=t, \frac{d y}{d t}+2 x+5 y=e^{t}$.
(d) Using Charpit's method find complete integral of $x p+3 y q=2\left(z-x^{2} q^{2}\right), p=\frac{\partial z}{\partial x}$, $q=\frac{\partial z}{\partial y}$.
(e) Solve the initial value problem
$\left(2 x \cos y+3 x^{2} y\right) d x+\left(x^{3}-x^{2} \sin y-y\right) d y=0$ with $y(0)=2$.
(f) Solve the simultaneous equations: $\frac{d x}{d t}+y=\sin t, \frac{d y}{d t}+x=\cos t$. Given that $x=2$ and $y=0$ when $t=0$.

3. Answer any two questions

(a) (i) Solve by the method of variation of parameters: $\frac{d^{2} y}{d x^{2}}+a^{2} y=\tan a x$.
(ii) Solve: $y-x \frac{d y}{d x}=2\left(1+x^{2} \frac{d y}{d x}\right)$; given $y(1)=1$.
(b) (i) Solve: $x(y-z) p+y(z-x) q=z(x-y), p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}$.
(ii) Eliminate the arbitrary function f from $f\left(x-y, y / x^{2}\right)=0$.
(iii) Find the partial differential equation of the set of all right circular cones whose axes coincide with z-axis.
(c) (i) Find the integral surface of $x^{2} p+y^{2} q+z^{2}=0, p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}$ which passes through the hyperbola $x y=x+y, z=1$
(ii) Solve $\frac{1}{D^{2}+a^{2}} \mathrm{x}^{2} \cos a x$, where $D \equiv \frac{d}{d x}$.
(d) (i) Solve :

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}-5 \frac{d x}{d t}+6 x+2 e^{2 t}+3 e^{t}=0 \tag{5}
\end{equation*}
$$

(ii) Solve $:(y-p x)(p-1)=p$, where $p=\frac{d y}{d x}$.

